From a statistical point of view, crime data present certain peculiarities that have led to a growing interest in their analysis. In particular, a characteristic that some property crimes frequently present is the existence of uncertainty about their exact location in time, being usual to only have a time window that delimits the occurrence of the event. There are different methods to deal with this type of interval-censored observation, most of them based on event time imputation. Another alternative is to carry out an aoristic analysis, which is based on assigning the same weight to each time unit included in the interval that limits the uncertainty about the event. However, this method has its limitations. In this paper, we present a spatio-temporal model based on the logistic regression that allows the analysis of crime data with temporal uncertainty, following the spirit of the aoristic method. The model is developed from a Bayesian perspective, which allows accommodating the temporal uncertainty of the observations. The model is applied to a dataset of residential burglaries recorded in Valencia, Spain. The results provided by this model are compared with those corresponding to the complete cases model, which discards temporally-uncertain events.


翻译:从统计学的角度看,犯罪数据呈现出某些特殊性,这些特殊性导致了对它们进行分析的越来越多的兴趣。特别是,一些财产犯罪频繁存在的特点是对它们的确切时间和地点存在不确定性,通常只有一个时间窗口来限定事件的发生。有一些方法用于处理这种间隔截尾的观察数据,其中大多数方法都是基于事件时间插补。另一种选择是进行aoristic分析,该分析基于将分配到边缘值期间每个时间单位相同的权重,以限制关于事件的不确定性。然而,这种方法有其局限性。在本文中,我们提出了一种基于逻辑回归的空间时间模型,该模型允许在aoristic方法的精神下分析存在时间不确定性的犯罪数据。该模型从贝叶斯透视进行了开发,以适应观察数据的时间不确定性。该模型应用于记录在西班牙瓦伦西亚的住宅入室盗窃的数据集中。该模型提供的结果与对完整个案模型相应的结果进行了比较,后者丢弃了有时间不确定性的事件。

0
下载
关闭预览

相关内容

逻辑回归(也称“对数几率回归”)(英语:Logistic regression 或logit regression),即逻辑模型(英语:Logit model,也译作“评定模型”、“分类评定模型”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。在统计学中,logistic模型(或logit模型)用于对存在的某个类或事件的概率建模,例如通过/失败、赢/输、活着/死了或健康/生病。这可以扩展到建模若干类事件,如确定一个图像是否包含猫、狗、狮子等。图像中检测到的每个物体的概率都在0到1之间,其和为1。
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
42+阅读 · 2020年12月18日
最新《生成式对抗网络GAN时空数据应用》综述论文,28pdf
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
12+阅读 · 2022年4月30日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
专知会员服务
42+阅读 · 2020年12月18日
最新《生成式对抗网络GAN时空数据应用》综述论文,28pdf
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员