Convolutional Neural Networks (CNNs) are highly effective for image reconstruction problems. Typically, CNNs are trained on large amounts of training images. Recently, however, un-trained CNNs such as the Deep Image Prior and Deep Decoder have achieved excellent performance for image reconstruction problems such as denoising and inpainting, \emph{without using any training data}. Motivated by this development, we address the reconstruction problem arising in accelerated MRI with un-trained neural networks. We propose a highly-optimized un-trained recovery approach based on a variation of the Deep Decoder. We show that the resulting method significantly outperforms conventional un-trained methods such as total-variation norm minimization, as well as naive applications of un-trained networks. Most importantly, we achieve on-par performance with a standard trained baseline, the U-net, on the FastMRI dataset, a dataset for benchmarking deep learning based reconstruction methods. While state-of-the-art trained methods still outperform our un-trained method, our work demonstrates that current trained methods only achieve a minor performance gain over un-trained methods, at the cost of a loss in robustness to out-of-distribution examples. Therefore, un-trained neural networks are a serious competitor to trained ones for medical imaging.
翻译:革命神经网络(CNNs)对于图像重建问题非常有效。 典型的情况是,有线电视新闻网在大量培训图像上接受培训。 但是,最近,没有受过训练的有线电视网,如深图像前导和深解码器等,在图像重建问题方面表现出色,如拆印和油漆,\emph{没有使用任何培训数据}。 受这一发展驱动,我们解决了由未经训练的神经网络加速MRI产生的重建问题。我们基于深解解码器的变异,提出了高度优化的未经训练的复原方法。我们表明,由此产生的方法大大优于常规的未经训练的方法,如全面最小化规范以及未受过训练的网络的天真应用。最重要的是,我们以经过标准培训的基线,Unet,在快速MRI数据集的基础上,在为深度学习重建方法制定基准的数据集上,我们所培训的状态方法仍然超越了我们未经训练的方法。 我们的工作表明,目前经过训练的方法大大优于常规的未受过训练的方法,如全面消化规范的常规方法,如尽量减少标准,如尽量减少变化规范,以及无训练的网络的应用。 在没有经过训练的网络中,在没有经过训练的研磨损方面,我们没有经过训练的研磨损方面,在没有经过训练的研损方面,在没有经过训练的研损经验的方法。