Hand motion capture data is now relatively easy to obtain, even for complicated grasps; however this data is of limited use without the ability to retarget it onto the hands of a specific character or robot. The target hand may differ dramatically in geometry, number of degrees of freedom (DOFs), or number of fingers. We present a simple, but effective framework capable of kinematically retargeting multiple human hand-object manipulations from a publicly available dataset to a wide assortment of kinematically and morphologically diverse target hands through the exploitation of contact areas. We do so by formulating the retarget operation as a non-isometric shape matching problem and use a combination of both surface contact and marker data to progressively estimate, refine, and fit the final target hand trajectory using inverse kinematics (IK). Foundational to our framework is the introduction of a novel shape matching process, which we show enables predictable and robust transfer of contact data over full manipulations while providing an intuitive means for artists to specify correspondences with relatively few inputs. We validate our framework through thirty demonstrations across five different hand shapes and six motions of different objects. We additionally compare our method against existing hand retargeting approaches. Finally, we demonstrate our method enabling novel capabilities such as object substitution and the ability to visualize the impact of design choices over full trajectories.
翻译:暂无翻译