Deep learning models are able to approximate one specific dynamical system but struggle at learning generalisable dynamics, where dynamical systems obey the same laws of physics but contain different numbers of elements (e.g., double- and triple-pendulum systems). To relieve this issue, we proposed the Modular Lagrangian Network (ModLaNet), a structural neural network framework with modularity and physical inductive bias. This framework models the energy of each element using modularity and then construct the target dynamical system via Lagrangian mechanics. Modularity is beneficial for reusing trained networks and reducing the scale of networks and datasets. As a result, our framework can learn from the dynamics of simpler systems and extend to more complex ones, which is not feasible using other relevant physics-informed neural networks. We examine our framework for modelling double-pendulum or three-body systems with small training datasets, where our models achieve the best data efficiency and accuracy performance compared with counterparts. We also reorganise our models as extensions to model multi-pendulum and multi-body systems, demonstrating the intriguing reusable feature of our framework.
翻译:深层学习模型能够接近一个特定的动态系统,但在学习一般动态时挣扎,动态系统能够遵守相同的物理定律,但包含不同数量的元素(例如,双元和三元元系统)。为了解决这个问题,我们提议了Modular Lagrangian网络(ModLaNet),这是一个结构神经网络框架,具有模块性和物理感应偏差。这个框架模型用模块性来模拟每个元素的能量,然后通过Lagrangian机械学来构建目标动态系统。模块性有利于重新使用经过培训的网络,缩小网络和数据集的规模。因此,我们的框架可以从更简单的系统的动态中学习,并扩大到更复杂的系统,而使用其他相关的物理知情神经网络是不可行的。我们研究了我们的模拟双元或三体系统的框架,其中我们的模型与对口单位相比实现了最佳的数据效率和准确性性能。我们还重组了我们的模型,作为模型多元和多体系统的扩展,展示了我们框架的内在可重复性特征。