Noise reduction is a critical aspect of hearing aids that researchers trying to solve over the years. Most of the noise reduction algorithms are evaluated using English Speech Material. There are many differences between the linguistic features of English and Sinhala languages, such as different syllable structures and different vowel duration. Both wavelet transformation and adaptive filtering have been widely used for noise reduction in hearing aids. This paper compares the performance of wavelet transformation of ten wavelet families with soft and hard thresholding methods against adaptive filters with Normalized Least Mean Square (NLMS), Least Mean Square (LMS), Average Normalized Least Mean Square (ANLMS), Recursive Least Square (RLS), and Adaptive Filtering Averaging (AFA) optimization algorithms along with cepstral and energy-based voice activity detection (VAD) algorithms. The performance evaluation is done using objective metrics; Signal to Noise Ratio (SNR) and Perceptual Evaluation of Speech Quality (PESQ) and a subjective metric; Mean Opinion Score (MOS). The NOIZEUS database by the University of Texas, Dallas and a newly formed Sinhala language audio database were used for the evaluation.


翻译:降噪是助聽器領域的一個關鍵方面,研究人員多年來一直在嘗試解決這個問題。大多數降噪算法是使用英語語音材料進行評估的。英語和僧伽羅語言之間存在許多不同之處,例如不同的音節結構和不同的元音持續時間。小波轉換和自適應濾波器已經被廣泛用於助聽器中的降噪。本文比較了十種小波家族進行小波轉換與軟閾值和硬閾值方法的性能,與自適應濾波器中的規格化最小均方(NLMS)、最小均方(LMS)、平均規格化最小均方(ANLMS)、遞歸最小二乘(RLS)和自適應濾波平均值(AFA)優化算法進行比較。同時,本文還研究了基於倒譜和基於能量的聲音活動檢測(VAD)算法。通過使用客觀度量標準,即信噪比(SNR)和音質主觀評估語音質量(PESQ),以及主觀度量標準,即平均意見分數(MOS)進行性能評估。本文使用了得克薩斯大學達拉斯分校的NOIZEUS數據庫和一個新形成的僧伽羅語言音頻數據庫進行評估。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员