The use of approximation is fundamental in computational science. Almost all computational methods adopt approximations in some form in order to obtain a favourable cost/accuracy trade-off and there are usually many approximations that could be used. As a result, when a researcher wishes to measure a property of a system with a computational technique, they are faced with an array of options. Current computational workflow frameworks focus on helping researchers automate a sequence of steps on a particular platform. The aim is often to obtain a computational measurement of a property. However these frameworks are unaware that there may be a large number of ways to do so. As such, they cannot support researchers in making these choices during development or at execution-time. We argue that computational workflow frameworks should be designed to be \textit{approximation-aware} - that is, support the fact that a given workflow description represents a task that \textit{could} be performed in different ways. This is key to unlocking the potential of computational workflows to accelerate discovery tasks, particularly those involving searches of large entity spaces. It will enable efficiently obtaining measurements of entity properties, given a set of constraints, by directly leveraging the space of choices available. In this paper we describe the basic functions that an approximation-aware workflow framework should provide, how those functions can be realized in practice, and illustrate some of the powerful capabilities it would enable, including approximate memoization, surrogate model support, and automated workflow composition.


翻译:近似的使用在计算科学中至关重要。几乎所有计算方法都采用某种形式的近近,以获得有利的成本/准确的权衡,通常可以使用许多近似。因此,当研究人员希望用计算技术测量系统属性时,他们面临一系列选项。当前的计算工作流程框架侧重于帮助研究人员在特定平台上实现一系列步骤的自动化。目的是经常获得对财产的计算计量。但这些框架并不意识到可能存在大量的方法。因此,他们无法支持研究人员在发展或执行时作出这些选择。我们主张计算工作流程框架的设计应当是\textit{approcolomation-aware}-也就是说,支持以下事实,即特定工作流程描述是一个任务,可以以不同方式执行。这是释放计算工作流程潜力以加速发现任务的关键,特别是涉及搜索大实体空间的任务。因此,他们无法在开发或执行时支持研究人员作出这些选择。我们主张计算工作流程框架的设计应当是:计算系统属性的属性属性属性的属性属性属性属性的属性属性属性属性,根据我们现有基本文件的准确性能说明我们如何利用这些实际的准确性框架。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员