Convolutional Neural Networks (CNNs) intrinsically requires large-scale data whereas Chest X-Ray (CXR) images tend to be data/annotation-scarce, leading to over-fitting. Therefore, based on our development experience and related work, this paper thoroughly introduces tricks to improve generalization in the CXR diagnosis: how to (i) leverage additional data, (ii) augment/distillate data, (iii) regularize training, and (iv) conduct efficient segmentation. As a development example based on such optimization techniques, we also feature LPIXEL's CNN-based CXR solution, EIRL Chest Nodule, which improved radiologists/non-radiologists' nodule detection sensitivity by 0.100/0.131, respectively, while maintaining specificity.
翻译:进化神经网络(CNNs)本质上需要大规模数据,而胸X-射线(CXR)图像往往是数据/注解破碎,因此,根据我们的发展经验和相关工作,本文件全面引入了各种技巧,改进CXR诊断的概括性:如何(一) 利用额外数据,(二) 增加/提炼数据,(三) 规范培训,(四) 高效分割,作为基于这种优化技术的发展范例,我们还以LPIXEL的CNN CXR溶液EIRL Chest结核为主,在保持特性的同时,将放射学家/非放射学家的结核探测灵敏度分别提高0.100/0.131。