This study proposes a simulation framework of procurement operations in the container logistics industry that can support the development of dynamic procurement strategies. The idea is inspired by the success of Passenger Origin-Destination Simulator (PODS) in the field of airline revenue management. By and large, research in procurement has focused on the optimisation of purchasing decisions, i.e., when-to-order and supplier selection, but a principled approach to procurement operations is lacking. We fill this gap by developing a probabilistic model of a procurement system. A discrete-event simulation logic is used to drive the evolution of the system. In a small case study, we use the simulation to deliver insights by comparing different supplier selection policies in a dynamic spot market environment. Policies based on contextual multi-armed bandits are seen to be robust to limited access to the information that determines the distribution of the outcome. This paper provides a pool of modelling ideas for simulation and observational studies. Moreover, the probabilistic formulation paves the way for advanced machine learning techniques and data-driven optimisation in procurement.
翻译:暂无翻译