The classical Heawood inequality states that if the complete graph $K_n$ on $n$ vertices is embeddable in the sphere with $g$ handles, then $g \ge\dfrac{(n-3)(n-4)}{12}$. A higher-dimensional analogue of the Heawood inequality is the K\"uhnel conjecture. In a simplified form it states that for every integer $k>0$ there is $c_k>0$ such that if the union of $k$-faces of $n$-simplex embeds into the connected sum of $g$ copies of the Cartesian product $S^k\times S^k$ of two $k$-dimensional spheres, then $g\ge c_k n^{k+1}$. For $k>1$ only linear estimates were known. We present a quadratic estimate $g\ge c_k n^2$.
翻译:典型的希伍尔不平等情况表明,如果整张图中以美元为单位的脊椎值为单位的美元值为零,那么,如果将整张图中以美元为单位的圆顶值嵌入圆球体,那么,以美元为单位的圆顶值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值为单位的圆形值。