We study how to generate molecule conformations (\textit{i.e.}, 3D structures) from a molecular graph. Traditional methods, such as molecular dynamics, sample conformations via computationally expensive simulations. Recently, machine learning methods have shown great potential by training on a large collection of conformation data. Challenges arise from the limited model capacity for capturing complex distributions of conformations and the difficulty in modeling long-range dependencies between atoms. Inspired by the recent progress in deep generative models, in this paper, we propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph. We propose a method combining the advantages of both flow-based and energy-based models, enjoying: (1) a high model capacity to estimate the multimodal conformation distribution; (2) explicitly capturing the complex long-range dependencies between atoms in the observation space. Extensive experiments demonstrate the superior performance of the proposed method on several benchmarks, including conformation generation and distance modeling tasks, with a significant improvement over existing generative models for molecular conformation sampling.
翻译:我们研究如何从分子图中产生分子一致性(\textit{i.e}, 3D结构) 。传统方法,例如分子动态、通过计算费用昂贵的模拟进行样本一致性等传统方法。最近,机器学习方法通过培训大量收集符合性数据,显示出巨大的潜力。挑战来自采集符合性复杂分布的模型能力有限,以及难以模拟原子之间的长距离依赖性。在本文件深层基因化模型最近取得的进展的启发下,我们提出了一个新的概率框架,以产生符合分子图的有效和多样化的符合性。我们提出了一个方法,将流动和能源模型的优势结合起来,享有:(1) 估算多式联运符合性分布的高模型能力;(2) 明确捕捉观察空间原子之间的复杂长距离依赖性。广泛的实验表明,提议的方法在几个基准上表现优异性,包括符合性生成和距离性任务,大大改进了分子符合性抽样的现有基因化模型。