Most of the existing clustering methods are based on a single granularity of information, such as the distance and density of each data. This most fine-grained based approach is usually inefficient and susceptible to noise. Therefore, we propose a clustering algorithm that combines multi-granularity Granular-Ball and minimum spanning tree (MST). We construct coarsegrained granular-balls, and then use granular-balls and MST to implement the clustering method based on "large-scale priority", which can greatly avoid the influence of outliers and accelerate the construction process of MST. Experimental results on several data sets demonstrate the power of the algorithm. All codes have been released at https://github.com/xjnine/GBMST.
翻译:现有大多数组群方法都基于单一的信息颗粒,例如每个数据的距离和密度。这种最精细的基于数据的方法通常效率低,容易受到噪音的影响。因此,我们建议采用组合算法,将多色颗粒球和最小横幅树(MST)结合起来。我们建造粗粒颗粒球,然后使用颗粒球和MST来实施基于“大规模优先级”的群集方法,这种方法可以大大避免离子的影响,加快MST的建设过程。几个数据集的实验结果显示了算法的力量。所有代码都已经在 https://github.com/xjnine/GBMST 上发布。</s>