Electrical static random memory (E-SRAM) is the current standard for internal static memory in Field Programmable Gate Array (FPGA). Despite the dramatic improvement in E-SRAM technology over the past decade, the goal of ultra-fast, energy-efficient static random memory has yet to be achieved with E-SRAM technology. However, preliminary research into optical static random access memory (O-SRAM) has shown promising results in creating energy-efficient ultra-fast static memories. This paper investigates the advantage of O-SRAM over E-SRAM in access speed and energy performance while executing sparse Matricized Tensor Times Khatri-Rao Product (spMTTKRP). spMTTKRP is an essential component of tensor decomposition algorithms which is heavily used in data science applications. The evaluation results show O-SRAMs can achieve speeds of 1.1x - 2.9x while saving 2.8x - 8.1x energy compared to conventional E-SRAM technology.


翻译:电动静态随机内存(E-SRAM)是外地可编程门阵列(FPGA)目前内部静态内存的标准。尽管在过去十年中E-SRAM技术有了显著改善,但E-SRAM技术尚未实现超快、节能静态随机内存的目标。然而,对光学静态随机内存(O-SRAM)的初步研究显示,在创造节能超快静态内存(O-SRAM)方面,取得了可喜成果。本文调查了O-SRAM相对于E-SRAM的存取速度和能量性能的优势,同时执行稀有的Tensor Tensor Temri-Khatri-Rao产品(SPMTKRP ) 。 SpMTKRP是数据科学应用中大量使用的高压分解算法的一个基本组成部分。评价结果显示,O-SRAMs可以达到1.1x-2.9x的速度,而与常规的E-SRAM技术相比,可以节省2.8x-8.1x能量。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员