We study the joint occurrence of large values of a Markov random field or undirected graphical model associated to a block graph. On such graphs, containing trees as special cases, we aim to generalize recent results for extremes of Markov trees. Every pair of nodes in a block graph is connected by a unique shortest path. These paths are shown to determine the limiting distribution of the properly rescaled random field given that a fixed variable exceeds a high threshold. The latter limit relation implies that the random field is multivariate regularly varying and it determines the max-stable distribution to which component-wise maxima of independent random samples from the field are attracted. When the sub-vectors induced by the blocks have certain limits parametrized by H\"usler-Reiss distributions, the global Markov property of the original field induces a particular structure on the parameter matrix of the limiting max-stable H\"usler-Reiss distribution. The multivariate Pareto version of the latter turns out to be an extremal graphical model according to the original block graph. Thanks to these algebraic relations, the parameters are still identifiable even if some variables are latent.
翻译:我们研究与块图相关的马尔科夫随机字段或非方向图形模型的大型共同值。 在含有树的图表中, 我们的目标是将马尔科夫树极端的最近结果概括化。 区块图中的每一对节点都通过一个独特的最短路径连接。 这些路径可以确定适当重新标点随机字段的有限分布, 这是因为固定变量超过一个高阈值。 后一种限制关系意味着随机字段是多变的, 并且它决定了从字段中吸引独立随机样本的最大值。 当区块引发的子矢量因 H\' usler- Reiss 分布而具有一定的极限时, 原始字段的全球Markov 属性会在限制最大表位 H\\ usler- Reiss 分布的参数矩阵上引入一个特定结构。 后者的多变式 Pareto 版本根据原始块图解算出为极端图形模型。 由于这些高位关系, 这些参数仍然是可辨认的。