Automated shape repair approaches currently lack access to datasets that describe real-world damaged geometry. We present Fantastic Breaks (and Where to Find Them: https://terascale-all-sensing-research-studio.github.io/FantasticBreaks), a dataset containing scanned, waterproofed, and cleaned 3D meshes for 150 broken objects, paired and geometrically aligned with complete counterparts. Fantastic Breaks contains class and material labels, proxy repair parts that join to broken meshes to generate complete meshes, and manually annotated fracture boundaries. Through a detailed analysis of fracture geometry, we reveal differences between Fantastic Breaks and synthetic fracture datasets generated using geometric and physics-based methods. We show experimental shape repair evaluation with Fantastic Breaks using multiple learning-based approaches pre-trained with synthetic datasets and re-trained with subset of Fantastic Breaks.
翻译:摘要:目前自动化形状修复方法缺乏描述现实世界损坏几何形状的数据集。我们提供了Fantastic Breaks(激动人心的断裂,及其探索方式:https://terascale-all-sensing-research-studio.github.io/FantasticBreaks),这是一个包含150个断裂物体的扫描、防水和清洁的3D网格数据集,与完整的对应物的几何对齐。Fantastic Breaks包含类别和材料标签、代理修复部件,将断裂网格连接到完整网格以生成完整网格,并手动注释断裂边界。通过对断裂几何的详细分析,我们揭示了Fantastic Breaks和使用几何和基于物理的方法生成的合成断裂数据集之间的差异。我们展示了使用Fantastic Breaks进行实验形状修复评估的多种基于学习的方法,这些方法使用合成数据集进行预训练,并使用Fantastic Breaks的子集进行重新训练。