With the increase of COVID-19 cases worldwide, an effective way is required to diagnose COVID-19 patients. The primary problem in diagnosing COVID-19 patients is the shortage and reliability of testing kits, due to the quick spread of the virus, medical practitioners are facing difficulty identifying the positive cases. The second real-world problem is to share the data among the hospitals globally while keeping in view the privacy concerns of the organizations. Building a collaborative model and preserving privacy are major concerns for training a global deep learning model. This paper proposes a framework that collects a small amount of data from different sources (various hospitals) and trains a global deep learning model using blockchain based federated learning. Blockchain technology authenticates the data and federated learning trains the model globally while preserving the privacy of the organization. First, we propose a data normalization technique that deals with the heterogeneity of data as the data is gathered from different hospitals having different kinds of CT scanners. Secondly, we use Capsule Network-based segmentation and classification to detect COVID-19 patients. Thirdly, we design a method that can collaboratively train a global model using blockchain technology with federated learning while preserving privacy. Additionally, we collected real-life COVID-19 patients data, which is, open to the research community. The proposed framework can utilize up-to-date data which improves the recognition of computed tomography (CT) images. Finally, our results demonstrate a better performance to detect COVID-19 patients.


翻译:随着全世界COVID-19病例的增加,诊断COVID-19病人需要一种有效的方法。诊断COVID-19病人需要一种有效的方法。诊断COVID-19病人的首要问题是测试包的短缺和可靠性,由于病毒的迅速传播,医疗从业者面临着确定积极病例的困难。第二个现实世界的问题是在全球各医院之间共享数据,同时注意各组织的隐私问题。建立一个合作模式和维护隐私是培训全球深层学习模式的主要关注事项。本文建议了一个框架,从不同来源(不同医院)收集少量数据,并利用基于块链的联邦学习来培训全球深层学习模型。链式技术认证数据和联合学习在全球范围培训模型,同时保护组织的隐私。首先,我们提出一种数据正常化技术,处理数据从不同类型有CT扫描器的不同医院收集的数据的异质性。第二,我们使用基于Capsule网络的分解和分类来检测COVID-19病人。第三,我们设计一种方法,可以合作化D模式,用基于块链式的图像来培训全球模型,同时使用CIFEFM数据库学习数据。我们学习了真正的数据库数据库数据库数据库。最后的模型,我们学习了数据,可以改进了数据库数据库数据库数据库数据库数据库数据库。我们学习了数据。

0
下载
关闭预览

相关内容

MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
101+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Anomalous Instance Detection in Deep Learning: A Survey
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
101+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Anomalous Instance Detection in Deep Learning: A Survey
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Top
微信扫码咨询专知VIP会员