In this paper, we study binary constrained codes that are resilient to bit-flip errors and erasures. In our first approach, we compute the sizes of constrained subcodes of linear codes. Since there exist well-known linear codes that achieve vanishing probabilities of error over the binary symmetric channel (which causes bit-flip errors) and the binary erasure channel, constrained subcodes of such linear codes are also resilient to random bit-flip errors and erasures. We employ a simple identity from the Fourier analysis of Boolean functions, which transforms the problem of counting constrained codewords of linear codes to a question about the structure of the dual code. We illustrate the utility of our method in providing explicit values or efficient algorithms for our counting problem, by showing that the Fourier transform of the indicator function of the constraint is computable, for different constraints. Our second approach is to obtain good upper bounds, using an extension of Delsarte's linear program (LP), on the largest sizes of constrained codes that can correct a fixed number of combinatorial errors or erasures. We observe that the numerical values of our LP-based upper bounds beat the generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).
翻译:在这篇论文中,我们研究抗位翻转误差和擦除的二元受限编码。 在我们的第一种方法中,我们计算线性编码的受限子码的大小。由于已知的线性码在二元对称信道(引起位翻转误差)和二元擦除信道上都可以实现错误的概率趋近于零,因此这些线性码的受限子码也可以抵抗随机的位翻转误差和擦除。我们采用布尔函数傅里叶分析的简单身份验证,将线性编码的受限码字计数问题转化为对对偶码的结构的问题。我们展示了我们的方法在提供计算我们计数问题的显式值或高效算法方面的效用,通过展示约束指示函数的傅里叶变换是可计算的,有不同的约束方式。我们的第二种方法是使用 Delsarte 的线性规划(LP)的扩展,针对可以纠正固定数量的组合误差或擦除的受限编码的最大大小提供良好的上界。我们观察到,我们的基于LP的上界的数值击败了 Fazeli、Vardy 和 Yaakobi(2015)的广义球装包络。