To extract channel characteristics and conduct channel modeling in millimeter-wave (mmWave) and Terahertz (THz) bands, accurate estimations of multi-path component (MPC) parameters in measured results are fundamental. However, due to high frequency and narrow antenna beams in mmWave and THz direction-scan measurements, existing channel parameter estimation algorithms are no longer effective. In this paper, a novel narrow-beam near-field space-alternating generalized expectation-maximization (N2-SAGE) algorithm is proposed, which is derived by carefully considering the features of mmWave and THz direction-scan measurement campaigns, such as near field propagation, narrow antenna beams as well as asynchronous measurements in different scanning directions. The delays of MPCs are calculated using spherical wave front (SWF), which depends on delay and angles of MPCs, resulting in a high-dimensional estimation problem. To overcome this, a novel two-phase estimation process is proposed, including a rough estimation phase and an accurate estimation phase. Moreover, considering the narrow antenna beams used for mmWave and THz direction-scan measurements, the usage of partial information alleviates influence of background noises. Additionally, the phases of MPCs in different scanning directions are treated as random variables, which are estimated and reused during the estimation process, making the algorithm immune to possible phase errors. Furthermore, performance of the proposed N2-SAGE algorithm is validated and compared with existing channel parameter estimation algorithms, based on simulations and measured data. Results show that the proposed N2-SAGE algorithm greatly outperforms existing channel parameter estimation algorithms in terms of estimation accuracy. By using the N2-SAGE algorithm, the channel is characterized more correctly and reasonably.


翻译:为了在毫米波(mmWave)和Terahertz(Thz)波段中提取频道特性并进行频道模型化,在测量结果中准确估计多路径部分(MPC)参数是根本的,但是,由于毫米Wave和Thz方向扫描测量中的高频率和窄天线光束,现有的频道参数估算算法不再有效。在本文中,提出了一个新的窄比亚近地外空间调整通用期望-最大化算法(N2-SAGE)算法,这是通过仔细考虑毫米Wave和Thz方向测算运动的特性而得出的,在测量结果中,对多路径值进行精确的估算。 计算方法的延迟使用球形波前(SWF)计算,这取决于离子波的延迟和直径直径直角度,从而产生高度估计问题。为了克服这一点,提出了一个新的两阶段估算法,包括粗估阶段和精确估算阶段。此外,从窄天线的角度比较轨道数据方向的精确度测算,在目前测测算中,以不同角度测测算方法,在目前测测算结果中,正在进行。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月22日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员