The Gaia Data Release 3 (DR3), published in June 2022, delivers a diverse set of astrometric, photometric, and spectroscopic measurements for more than a billion stars. The wealth and complexity of the data makes traditional approaches for estimating stellar parameters for the full Gaia dataset almost prohibitive. We have explored different supervised learning methods for extracting basic stellar parameters as well as distances and line-of-sight extinctions, given spectro-photo-astrometric data (including also the new Gaia XP spectra). For training we use an enhanced high-quality dataset compiled from Gaia DR3 and ground-based spectroscopic survey data covering the whole sky and all Galactic components. We show that even with a simple neural-network architecture or tree-based algorithm (and in the absence of Gaia XP spectra), we succeed in predicting competitive results (compared to Bayesian isochrone fitting) down to faint magnitudes. We will present a new Gaia DR3 stellar-parameter catalogue obtained using the currently best-performing machine-learning algorithm for tabular data, XGBoost, in the near future.
翻译:2022年6月出版的Gaia数据发布3 (DR3) 3 (DR3) 提供了一套针对十亿多颗恒星的多种多样的天体测量、光度测量和光谱测量数据。这些数据的丰富和复杂程度使得估算全Gaia数据集星表参数的传统方法几乎令人望而却步。我们探索了不同的有监督的学习方法,以提取基本恒星参数以及距离和视线灭绝,并给定了光谱-光谱测量数据(包括新的Gaia XP光谱 ) 。为了进行培训,我们将使用从Gaia DR3和地面光谱测量数据汇编的高质量数据集,这些数据涵盖整个天空和所有银河系组成部分。我们表明,即使使用简单的神经网络结构或树基算法(在Gaia XP光谱缺失的情况下),我们也成功地将竞争结果(与Bayesian ochrone 相匹配) 下至微分级。我们将用目前最佳的机器学习算算算器在近的未来获得的表格、XGBStararmat数据。