Measurement invariance across items is key to the validity of instruments like a survey questionnaire or an educational test. Differential item functioning (DIF) analysis is typically conducted to assess measurement invariance at the item level. Traditional DIF analysis methods require knowing the comparison groups (reference and focal groups) and anchor items (a subset of DIF-free items). Such prior knowledge may not always be available, and psychometric methods have been proposed for DIF analysis when one piece of information is unknown. More specifically, when the comparison groups are unknown while anchor items are known, latent DIF analysis methods have been proposed that estimate the unknown groups by latent classes. When anchor items are unknown while comparison groups are known, methods have also been proposed, typically under a sparsity assumption - the number of DIF items is not too large. However, there does not exist a method for DIF analysis when both pieces of information are unknown. This paper fills the gap. In the proposed method, we model the unknown groups by latent classes and introduce item-specific DIF parameters to capture the DIF effects. Assuming the number of DIF items is relatively small, an $L_1$-regularised estimator is proposed to simultaneously identify the latent classes and the DIF items. A computationally efficient Expectation-Maximisation (EM) algorithm is developed to solve the non-smooth optimisation problem for the regularised estimator. The performance of the proposed method is evaluated by simulation studies and an application to item response data from a real-world educational test
翻译:暂无翻译