项目名称: 水蒸气辅助等离子体活化室温键合及其机理研究
项目编号: No.51505106
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 机械、仪表工业
项目作者: 王晨曦
作者单位: 哈尔滨工业大学
项目金额: 21万元
中文摘要: 在半导体制造及微纳系统封装领域,无需加热的室温(~25℃)晶圆直接键合能够避免一切高温退火所带来的问题,被视为下一代微纳制造工艺的备选。本项目提出了水蒸气辅助等离子体活化法。该方法通过水蒸气辅助等离子体照射控制吸附于晶圆表面的羟基 (OH基团)密度和吸附的水分子层,从而提高键合强度。该方法旨在实现在室温即能达到足够键合强度的同时,最大限度地减少孔洞的产生。该方法还具备简单易行,绿色环保,低成本等特点。. 另外,本项目我们利用分子动力学,参照材料表面及键合界面表征结果,模拟键合行为。通过原子尺度键合能和宏观键合强度的相关关系。考察温度对键合强度的影响,实现键合机理模型建立。该模型能够对键合工艺参数的优化提供帮助,弄清等离子体表面活化的条件对键合强度的影响及其作用方式,理论上预测硅基材料之间的键合性。
中文关键词: 室温;等离子体活化;分子动力学;晶圆键合;界面
英文摘要: In semiconductor manufacture and micro/nanosystem packaging field, wafer direct bonding at room temperature (~25℃) without requiring heating is highly desirable to remove all problems raised from high temperature. It is regarded as one of promising techniques for next micro/nanofabrication. In this project, a vapor assisted plasma activated bonding method is proposed. In order to improve the bonding strength at room temperature, both OH groups and water molecule layers are properly controlled to be adsorbed on wafer surfaces using the vapor assisted plasma activation. This method enables sufficient bonding strength even at room temperature and prevents void generation as much as possible. Also, it is a facile, environment-friendly, and low-cost process. . On the other hand, we propose a bonding model based on the molecule dynamics to simulate the bonding behavior combing with surface and interface characterizations. According to the relationship between the bond energy in atomic/molecular scale and the bonding strength in maco scale, the effect of temperature on bonding strength is systemically investigated. Therefore, a dynamic model is established to demonstrate the bonding mechanism. We believe that this model provide a useful tool for optimizing bonding parameters, developing novel wafer bonding process as well as understanding the role of plasma activation. Furthermore, the bondability between Si-based materials is expected to be predicted theoretically based on this model.
英文关键词: Room temperature;Plasma activation;Molecule dynamics;Wafer bonding;Interface