In this article, we present the port-Hamiltonian representation, the structure preserving discretization and the resulting finite-dimensional state space model of geometrically nonlinear mechanical systems based on a mixed finite element formulation. This article focuses on St. Venant-Kirchhoff materials connecting the Green strain and the second Piola-Kirchhoff stress tensor in a linear relationship which allows a port-Hamiltonian representation by means of its co-energy (effort) variables. Due to treatment of both Dirichlet and Neumann boundary conditions in the appropriate variational formulation, the resulting port-Hamiltonian state space model features both of them as explicit (control) inputs. Numerical experiments generated with FEniCS illustrate the properties of the resulting FE models.
翻译:在本篇文章中,我们介绍了港口-汉堡代表、保持离散的结构以及由此产生的基于混合有限要素配方的非线性机械系统几何分立空间模型,侧重于连接绿色菌株和第二Piola-Kirchhoff压力阵列的圣Venant-Kirchhoff材料,这在线性关系中允许港口-Hamiltonian代表以其共同能源(节能)变量的方式进行。由于在适当的变式配方中对迪里赫莱特和纽曼边界条件的处理,由此产生的港-Hamiltonian空间模型将两者都作为明确的(控制)投入。与FENICS产生的数值实验说明了由此产生的FE模型的特性。