Specification synthesis is the process of deriving a model from the input-output traces of a system. It is used extensively in test design, reverse engineering, and system identification. One type of the resulting artifact of this process for cyber-physical systems is hybrid automata. They are intuitive, precise, tool independent, and at a high level of abstraction, and can model systems with both discrete and continuous variables. In this paper, we propose a new technique for synthesizing hybrid automaton from the input-output traces of a non-linear cyber-physical system. Similarity detection in non-linear behaviors is the main challenge for extracting such models. We address this problem by utilizing the Dynamic Time Warping technique. Our approach is passive, meaning that it does not need interaction with the system during automata synthesis from the logged traces; and online, which means that each input/output trace is used only once in the procedure. In other words, each new trace can be used to improve the already synthesized automaton. We evaluated our algorithm in two industrial and simulated case studies. The accuracy of the derived automata show promising results.
翻译:具体合成是从系统输入输出痕迹中得出模型的过程。 它在测试设计、反向工程和系统识别中被广泛使用。 网络物理系统由此产生的工艺品的一种类型是混合自动成形系统。 它们具有直观性、精确、工具独立,具有高度的抽象性,可以用离散和连续变量建模系统。 在本文中, 我们提出了一个从非线性网络物理系统输入输出痕迹中合成混合自动成形的新技术。 非线性行为中的相似性探测是提取这些模型的主要挑战。 我们通过动态时间扭曲技术解决这个问题。 我们的方法是被动的,这意味着在从登录痕迹中进行自动成形合成时不需要与系统互动; 在线,这意味着每个输入/输出痕迹只用于一次程序。 换句话说, 每一种新痕迹都可以用来改进已经合成的自动成形图。 我们在两个工业和模拟案例研究中评估了我们的算法。 分析的自动成形图显示有希望的结果。