Machine learning in the context of noise is a challenging but practical setting to plenty of real-world applications. Most of the previous approaches in this area focus on the pairwise relation (casual or correlational relationship) with noise, such as learning with noisy labels. However, the group noise, which is parasitic on the coarse-grained accurate relation with the fine-grained uncertainty, is also universal and has not been well investigated. The challenge under this setting is how to discover true pairwise connections concealed by the group relation with its fine-grained noise. To overcome this issue, we propose a novel Max-Matching method for learning with group noise. Specifically, it utilizes a matching mechanism to evaluate the relation confidence of each object w.r.t. the target, meanwhile considering the Non-IID characteristics among objects in the group. Only the most confident object is considered to learn the model, so that the fine-grained noise is mostly dropped. The performance on arange of real-world datasets in the area of several learning paradigms demonstrates the effectiveness of Max-Matching


翻译:噪音背景下的机器学习是一个挑战性但实用的环境,足以实现大量真实世界应用。这个领域的以往方法大多侧重于与噪音的对称关系(随机关系或相关关系),例如与噪音标签的学习。然而,对于与微粒不确定因素的粗粗微的准确关系,群体噪音是寄生的,这种噪音也是普遍性的,没有很好地调查。这一环境下的挑战是如何发现该群体与其微粒噪音的关系所隐藏的真正对称联系。为了克服这一问题,我们提出了一种与群体噪音学习的新型最大匹配方法。具体地说,它利用匹配机制来评估每个对象( w.r.t.)之间的关系,同时考虑该群体中物体的非IID特性。只有最自信的对象才被认为能够学习模型,因此微粒噪音大多会消失。在几个学习范例领域真实世界数据集的演化显示了Max-Matching的效果。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年5月9日
Arxiv
0+阅读 · 2021年5月5日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
3+阅读 · 2018年8月27日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年5月9日
Arxiv
0+阅读 · 2021年5月5日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
Arxiv
3+阅读 · 2018年8月27日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员