Recent breakthrough technological progressions of powerful mobile computing resources such as low-cost mobile GPUs along with cutting-edge, open-source software architectures have enabled high-performance deep learning on mobile platforms. These advancements have revolutionized the capabilities of today's mobile applications in different dimensions to perform data-driven intelligence locally, particularly for smart health applications. Unlike traditional machine learning (ML) architectures, modern on-device deep learning frameworks are proficient in utilizing computing resources in mobile platforms seamlessly, in terms of producing highly accurate results in less inference time. However, on the flip side, energy resources in a mobile device are typically limited. Hence, whenever a complex Deep Neural Network (DNN) architecture is fed into the on-device deep learning framework, while it achieves high prediction accuracy (and performance), it also urges huge energy demands during the runtime. Therefore, managing these resources efficiently within the spectrum of performance and energy efficiency is the newest challenge for any mobile application featuring data-driven intelligence beyond experimental evaluations. In this paper, first, we provide a timely review of recent advancements in on-device deep learning while empirically evaluating the performance metrics of current state-of-the-art ML architectures and conventional ML approaches with the emphasis given on energy characteristics by deploying them on a smart health application. With that, we are introducing a new framework through an energy-aware, adaptive model comprehension and realization (EAMCR) approach that can be utilized to make more robust and efficient inference decisions based on the available computing/energy resources in the mobile device during the runtime.


翻译:与传统的机器学习(ML)架构不同,现代的、先进的深层次学习框架熟练地利用移动平台中的计算机资源,在较不可靠的时间里产生非常准确的结果。然而,从反面看,移动装置中的能源资源通常有限。因此,每当复杂的深神经网络(DNN)架构被输入到在线深学习框架时,这些进步使当今移动应用程序在不同层面的能力发生革命,以便在当地进行数据驱动的智能智能智能应用,特别是智能健康应用。与传统的机器学习(ML)架构不同,现代的、现代的深层次学习框架在利用移动平台中的计算资源时,与传统机能学(MMNN)架构不同,高效地管理这些资源是任何移动应用模式面临的最新挑战,因为数据驱动的智能方法比实验性强得多。在本文中,我们及时审查移动装置中的能源资源进展。 每当复杂的深层学习框架被输入到在线深层次的深度学习中,尽管它实现了高预测准确性(和性),它也敦促在运行期间对能源需求的巨大需求进行高效管理,因此,我们可以通过常规的模型来进行快速的能源应用。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员