Recent deep learning (DL) applications are mostly built on top of DL libraries. The quality assurance of these libraries is critical to the dependable deployment of DL applications. A few techniques have thereby been proposed to test DL libraries by generating DL models as test inputs. Then these techniques feed those DL models to DL libraries for making inferences, in order to exercise DL libraries modules related to a DL model's execution. However, the test effectiveness of these techniques is constrained by the diversity of generated DL models. Our investigation finds that these techniques can cover at most 11.7% of layer pairs (i.e., call sequence between two layer APIs) and 55.8% of layer parameters (e.g., "padding" in Conv2D). As a result, we find that many bugs arising from specific layer pairs and parameters can be missed by existing techniques. In view of the limitations of existing DL library testing techniques, we propose MEMO to efficiently generate diverse DL models by exploring layer types, layer pairs, and layer parameters. MEMO: (1) designs an initial model reduction technique to boost test efficiency without compromising model diversity; and (2) designs a set of mutation operators for a customized Markov Chain Monte Carlo (MCMC) algorithm to explore new layer types, layer pairs, and layer parameters. We evaluate MEMO on seven popular DL libraries, including four for model execution (TensorFlow, PyTorch and MXNet, and ONNX) and three for model conversions (Keras-MXNet, TF2ONNX, ONNX2PyTorch). The evaluation result shows that MEMO outperforms recent works by covering 10.3% more layer pairs, 15.3% more layer parameters, and 2.3% library branches. Moreover, MEMO detects 29 new bugs in the latest version of DL libraries, with 17 of them confirmed by DL library developers, and 5 of those confirmed bugs have been fixed.


翻译:最近深层次学习( DL) 应用程序大多建在 DL 库顶部。 这些图书馆的质量保证对于可靠地部署 DL 应用程序至关重要。 因此, 提议了一些技术来测试 DL 库, 将 DL 模型作为测试投入。 然后这些技术将这些 DL 模型喂DL 库进行推导, 以便练习与 DL 模型执行有关的 DL 库模块。 然而, 这些技术的测试效力受到生成 DL 模型的多样性限制。 我们的调查发现, 这些技术最多可以覆盖11.7%的层对子( 即两个层 API 之间的呼叫序列) 和55.8%的层参数( 例如, Conv2DD 的“ 刷” 模型。 ) 结果, 我们发现, 与 DL 层 DL 相关的 DL 模型测试技术的D 模型 DMMO, 我们建议通过探索层类型、 底层对 DL 和底层参数来高效生成多种 DL 模型。 MEMO : (1) 设计一个初始模型, 包括 IM IM IM 的升级的MX IMVAL 系统升级的升级的 RIS 系统 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
44+阅读 · 2022年9月6日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
38+阅读 · 2020年3月10日
Arxiv
35+阅读 · 2020年1月2日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员