We present register set automata (RsAs), a register automaton model over data words where registers can contain sets of data values and the following operations are supported: adding values to registers, clearing registers, and testing (non-)membership. We show that the emptiness problem for RsAs is decidable and complete for the $F_\omega$ class. Moreover, we show that a large class of register automata can be transformed into deterministic RsAs, which can serve as a basis for (i) fast matching of a family of regular expressions with back-references and (ii) language inclusion algorithm for a sub-class of register automata. RsAs are incomparable in expressive power to other popular automata models over data words, such as alternating register automata and pebble automata.
翻译:我们提出一个注册自动地图集(ASAs),一个注册自动地图模型,以取代数据单词,登记单词可以包含数据集值,支持以下操作:在登记单、清理登记单和测试(非会员)中添加数值。我们表明,对于$F ⁇ omega$类来说,RsAs的空虚问题是可以分解的和完整的。此外,我们表明,大量的注册自动地图可以转换成确定式RSAs,这可以作为(一) 将常规表达式的组合与背引用快速匹配,以及(二) 注册自动地图分类的语言包含算法。RsAs与其他通用的自动地图模型相比,例如交替登记自动地图和标本自动地图等,不可比较的表达能力。