The identification of analytic tasks from free text is critical for visualization-oriented natural language interfaces (V-NLIs) to suggest effective visualizations. However, it is challenging due to the ambiguity and complexity nature of human language. To address this challenge, we present a new dataset, called Quda, that aims to help V-NLIs recognize analytic tasks from free-form natural language by training and evaluating cutting-edge multi-label classification models. Our dataset contains $14,035$ diverse user queries, and each is annotated with one or multiple analytic tasks. We achieve this goal by first gathering seed queries with data analysts and then employing extensive crowd force for paraphrase generation and validation. We demonstrate the usefulness of Quda through three applications. This work is the first attempt to construct a large-scale corpus for recognizing analytic tasks. With the release of Quda, we hope it will boost the research and development of V-NLIs in data analysis and visualization.


翻译:从免费文本中确定分析任务对于直观的自然语言界面(V-NLIs)建议有效的可视化至关重要。然而,由于人类语言的模糊性和复杂性,这具有挑战性。为了应对这一挑战,我们提出了一个称为Quda的新的数据集,旨在帮助V-NLIs通过培训和评价尖端多标签分类模式,识别自由形式的自然语言分析任务。我们的数据集包含14 035美元的各种用户查询,每个数据集都附有一项或多项分析任务的附加说明。我们通过首先与数据分析员收集种子查询,然后利用广泛的人群力量来生成和验证语音。我们通过三个应用程序展示了Quda的效用。这是为识别解析性任务而建立大规模系统的第一个尝试。随着Quda的发布,我们希望它将推动数据分析和可视化V-NLIs的研究与发展。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年4月17日
Arxiv
6+阅读 · 2018年5月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员