Many partial differential equations in mathematical physics describe the evolution of time-dependent (smooth) vector fields on a fixed domain. Examples include compressible fluid dynamics, shape analysis, optimal transport, and shallow water equations. The flow of the vector field generates a diffeomorphism, which in turn can be used to act on for instance functions or densities. Here, we consider a geometric discretization of diffeomorphisms on the sphere, based on quantization theory. We provide numerical examples and discuss potential applications of the discretization method.
翻译:数学物理学中的许多部分差异方程式描述了固定域上基于时间(mooth)矢量字段的演变过程,例如压缩流体动态、形状分析、最佳迁移和浅水方程式。矢量字段的流量产生了二异形,这反过来又可以用来进行功能或密度等操作。在这里,我们根据量化理论,考虑在球体上对二异形的几何分化。我们提供了数字实例,并讨论了离散方法的潜在应用。