Transfer learning (TL) approaches have shown promising results when handling tasks with limited training data. However, considerable memory and computational resources are often required for fine-tuning pre-trained neural networks with target domain data. In this work, we introduce a novel method for leveraging pre-trained models for low-resource (music) classification based on the concept of Neural Model Reprogramming (NMR). NMR aims at re-purposing a pre-trained model from a source domain to a target domain by modifying the input of a frozen pre-trained model. In addition to the known, input-independent, reprogramming method, we propose an advanced reprogramming paradigm: Input-dependent NMR, to increase adaptability to complex input data such as musical audio. Experimental results suggest that a neural model pre-trained on large-scale datasets can successfully perform music genre classification by using this reprogramming method. The two proposed Input-dependent NMR TL methods outperform fine-tuning-based TL methods on a small genre classification dataset.
翻译:转让学习(TL)方法在处理有限培训数据的任务时显示出有希望的结果,然而,通常需要大量记忆和计算资源,才能对事先培训的神经网络进行目标领域数据的微调。在这项工作中,我们引入了一种新的方法,根据神经模型重组概念,利用预先培训的低资源(音乐)分类模式。NMR的目的是通过修改冻结的预先培训模式的投入,将预先培训的模式从源域重新定位为目标域。除了已知的、依赖投入的、重新编程的外,我们还提出了先进的重新编程模式:依靠投入的NMR,以提高对音乐音频等复杂输入数据的适应性。实验结果表明,使用这种重新编程方法,预先培训大型数据集的神经模型可以成功地进行音乐基因分类。两种拟议的依靠输入的NMR TL方法超越了小基因分类数据集基于微调的TL方法。