It is important to build a rigorous verification and validation (V&V) process to evaluate the safety of highly automated vehicles (HAVs) before their wide deployment on public roads. In this paper, we propose an interaction-aware framework for HAV safety evaluation which is suitable for some highly-interactive driving scenarios including highway merging, roundabout entering, etc. Contrary to existing approaches where the primary other vehicle (POV) takes predetermined maneuvers, we model the POV as a game-theoretic agent. To capture a wide variety of interactions between the POV and the vehicle under test (VUT), we characterize the interactive behavior using level-k game theory and social value orientation and train a diverse set of POVs using reinforcement learning. Moreover, we propose an adaptive test case sampling scheme based on the Gaussian process regression technique to generate customized and diverse challenging cases. The highway merging is used as the example scenario. We found the proposed method is able to capture a wide range of POV behaviors and achieve better coverage of the failure modes of the VUT compared with other evaluation approaches.
翻译:重要的是要建立一个严格的核查和验证(V&V)程序,在高自动化车辆广泛部署在公共道路上之前评估其安全性。在本文件中,我们建议为HAV安全评估建立一个互动意识框架,这个框架适合一些高度互动的驾驶方案,包括高速公路合并、环路进入等。 与目前其他主要车辆(POV)采用预先设定的操作方法的做法相反,我们将POV模拟为游戏理论剂。为了捕捉POV与正在测试的车辆之间的广泛互动,我们利用水平游戏理论和社会价值导向来描述互动行为,并利用强化学习来培训一套不同的POVS。此外,我们提议基于高斯进程回归技术的适应性测试案例抽样计划,以生成定制和多样的具有挑战性的案例。我们发现拟议的方法能够捕捉到广泛的POVT行为,并与其他评估方法相比,更好地覆盖VUT的失败模式。