In spite of the successful application in many fields, machine learning algorithms today suffer from notorious problems like vulnerability to adversarial examples. Beyond falling into the cat-and-mouse game between adversarial attack and defense, this paper provides alternative perspective to consider adversarial example and explore whether we can exploit it in benign applications. We first propose a novel taxonomy of visual information along task-relevance and semantic-orientation. The emergence of adversarial example is attributed to algorithm's utilization of task-relevant non-semantic information. While largely ignored in classical machine learning mechanisms, task-relevant non-semantic information enjoys three interesting characteristics as (1) exclusive to algorithm, (2) reflecting common weakness, and (3) utilizable as features. Inspired by this, we present brave new idea called benign adversarial attack to exploit adversarial examples for goodness in three directions: (1) adversarial Turing test, (2) rejecting malicious algorithm, and (3) adversarial data augmentation. Each direction is positioned with motivation elaboration, justification analysis and prototype applications to showcase its potential.
翻译:尽管在许多领域应用成功,但如今,机器学习算法仍受到臭名昭著的问题的困扰,如易受对抗性攻击和防御之间对抗性攻击的伤害。除了落入对抗性攻击和防御之间的猫和猫和猫的游戏之外,本文件还提出了另一种观点,来考虑对抗性攻击的例子,并探讨我们是否能够在良性应用中加以利用。我们首先提议根据任务相关性和语义取向来对视觉信息进行新的分类。对抗性例子的出现归因于算法对任务相关非机密信息的利用。在古典机器学习机制中,与任务相关的非机密性信息基本上被忽视,但具有三个有趣的特征:(1) 算法独有的特性,(2) 反映共同弱点,(3) 具有特性,可加以利用。受此启发,我们提出了称为良性对抗性攻击的新大胆想法,以利用对抗性攻击实例实现三个方向的善良:(1) 对抗性图灵试验,(2) 拒绝恶意算法和(3) 对抗性数据增强。每个方向都带有动机的阐述、理由分析和原型应用,以展示其潜力。