Static word embeddings that represent words by a single vector cannot capture the variability of word meaning in different linguistic and extralinguistic contexts. Building on prior work on contextualized and dynamic word embeddings, we introduce dynamic contextualized word embeddings that represent words as a function of both linguistic and extralinguistic context. Based on a pretrained language model (PLM), dynamic contextualized word embeddings model time and social space jointly, which makes them attractive for a range of NLP tasks involving semantic variability. We highlight potential application scenarios by means of qualitative and quantitative analyses on four English datasets.
翻译:代表单矢量单词的静态字嵌入器无法捕捉不同语言和外语背景中文字含义的变异性。 在先前关于背景化和动态字嵌入器的工作基础上,我们引入了代表文字的动态背景化字嵌入器,作为语言和外语背景的功能。 基于预先培训的语言模式(PLM),动态背景化字嵌入器模式时间和社会空间联合,这使得它们对于涉及语义变异的一系列NLP任务具有吸引力。 我们通过对四个英语数据集进行定性和定量分析的方式,突出潜在应用情景。