Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information, and the types of reasoning are mainly divided into numerical reasoning and span extraction. Despite being the main challenge of the task compared to extractive QA, current numerical reasoning method simply uses LSTM to autoregressively decode program sequences, and each decoding step produces either an operator or an operand. However, the step-by-step decoding suffers from exposure bias, and the accuracy of program generation drops sharply with progressive decoding. In this paper, we propose a non-autoregressive program generation framework, which facilitates program generation in parallel. Our framework, which independently generates complete program tuples containing both operators and operands, can significantly boost the speed of program generation while addressing the error accumulation issue. Our experiments on the MultiHiertt dataset shows that our model can bring about large improvements (+7.97 EM and +6.38 F1 points) over the strong baseline, establishing the new state-of-the-art performance, while being much faster (21x) in program generation. The performance drop of our method is also significantly smaller than the baseline with increasing numbers of numerical reasoning steps.
翻译:列表- 文本解码解码( QA) 需要来自各种信息的推理, 推理类型主要分为数字推理和抽取。 尽管与采掘 QA 相比,这是任务的主要挑战, 当前的数字推理方法只是使用 LSTM 自动递解解码程序序列, 而每个解码步骤都产生操作员或操作员。 然而, 逐步解码存在接触偏差, 程序生成的准确性随着渐进解码而急剧下降 。 在本文中, 我们提出一个非航空程序生成框架, 以同时促进程序生成。 我们的框架独立生成包含操作员和操作员的完整程序图例, 能够大大加快程序生成速度, 同时解决错误积累问题 。 我们在多希特数据集上的实验显示, 我们的模型可以大大改进强的基线( +7.97 EM 和 + 638 F1 点), 从而在程序生成过程中建立新的状态性性能, 同时大大加快( 21x ) 。 我们方法的性下降速度也大大小于基线推算法。