Understanding how attitudes towards the Climate Emergency vary can hold the key to driving policy changes for effective action to mitigate climate related risk. The Oil and Gas industry account for a significant proportion of global emissions and so it could be speculated that there is a relationship between Crude Oil Futures and sentiment towards the Climate Emergency. Using Latent Dirichlet Allocation for Topic Modelling on a bespoke Twitter dataset, this study shows that it is possible to split the conversation surrounding the Climate Emergency into 3 distinct topics. Forecasting Crude Oil Futures using Seasonal AutoRegressive Integrated Moving Average Modelling gives promising results with a root mean squared error of 0.196 and 0.209 on the training and testing data respectively. Understanding variation in attitudes towards climate emergency provides inconclusive results which could be improved using spatial-temporal analysis methods such as Density Based Clustering (DBSCAN).


翻译:石油和天然气行业占全球排放量的很大比例,因此可以推测原油期货与气候紧急情况的情绪之间存在某种关系。 利用冷淡的稀释式分配用于在可言的Twitter数据集上进行主题模拟,这项研究表明,围绕气候紧急情况的对话可以分为三个不同专题。 使用季节性自动递减综合平均移动模型预测原油期货,在培训和测试数据方面分别得出0.196和0.29的根正方位错误,从而产生有希望的结果。 了解对气候紧急情况的态度差异提供了无结果,而利用诸如密度基底集群(DBSCAN)等空间时空分析方法可以改进这些结果。

0
下载
关闭预览

相关内容

MIT新书《强化学习与最优控制》
专知会员服务
282+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Top
微信扫码咨询专知VIP会员