Recent studies constructing direct interactions between the claim and each single user response (a comment or a relevant article) to capture evidence have shown remarkable success in interpretable claim verification. Owing to different single responses convey different cognition of individual users (i.e., audiences), the captured evidence belongs to the perspective of individual cognition. However, individuals' cognition of social things is not always able to truly reflect the objective. There may be one-sided or biased semantics in their opinions on a claim. The captured evidence correspondingly contains some unobjective and biased evidence fragments, deteriorating task performance. In this paper, we propose a Dual-view model based on the views of Collective and Individual Cognition (CICD) for interpretable claim verification. From the view of the collective cognition, we not only capture the word-level semantics based on individual users, but also focus on sentence-level semantics (i.e., the overall responses) among all users and adjust the proportion between them to generate global evidence. From the view of individual cognition, we select the top-$k$ articles with high degree of difference and interact with the claim to explore the local key evidence fragments. To weaken the bias of individual cognition-view evidence, we devise inconsistent loss to suppress the divergence between global and local evidence for strengthening the consistent shared evidence between the both. Experiments on three benchmark datasets confirm that CICD achieves state-of-the-art performance.


翻译:由于不同的单一答复传达了个人用户(即受众)的不同认知,所捕取的证据属于个人认知的视角,然而,个人对社会事物的认知并不总是能够真正反映目标,所有用户对索赔的意见中可能存在片面或偏颇的语义(即总体反应),并调整它们之间的比例以得出全球证据。从个人认知的角度,我们选择基于集体和个人认知(CICD)观点的双视图模式用于可解释的索赔核实。从集体认知的观点来看,我们不仅捕捉到个人认知的观点,我们不仅能够捕捉个人认知的社会事物的字级语义,而且关注所有用户对某一索赔的意见中可能存在片面或偏差的语义(即总体反应),并调整它们之间的比例以产生一些不客观和偏差的证据碎片,任务表现恶化。我们从个人认知的角度,选择基于集体和个人认知(CICD)的观点的双视图模式,用于可解释的索赔核实。从集体认知的角度看,我们不仅能捕捉到基于个人认知的字级语言的语系,而且能够辨测测测测测测测地地判断,我们之间会的单个数据差异和C级证据之间的对比。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员