Feedback can help crowdworkers to improve their ideations. However, current feedback methods require human assessment from facilitators or peers. This is not scalable to large crowds. We propose Interpretable Directed Diversity to automatically predict ideation quality and diversity scores, and provide AI explanations - Attribution, Contrastive Attribution, and Counterfactual Suggestions - for deeper feedback on why ideations were scored (low), and how to get higher scores. These explanations provide multi-faceted feedback as users iteratively improve their ideation. We conducted think aloud and controlled user studies to understand how various explanations are used, and evaluated whether explanations improve ideation diversity and quality. Users appreciated that explanation feedback helped focus their efforts and provided directions for improvement. This resulted in explanations improving diversity compared to no feedback or feedback with predictions only. Hence, our approach opens opportunities for explainable AI towards scalable and rich feedback for iterative crowd ideation.


翻译:然而,当前的反馈方法需要来自促进者或同龄人的人力评估。 这对众多的人群来说是无法伸缩的。我们提议可解释的《指导多样性》可以自动预测思想质量和多样性分数,并提供AI解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年1月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
5+阅读 · 2017年11月20日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
专知会员服务
91+阅读 · 2021年1月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
5+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员