Electricity is traded on various markets with different time horizons and regulations. Short-term intraday trading becomes increasingly important due to the higher penetration of renewables. In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the European Power EXchange (EPEX) spot markets in a distinct hourly pattern. This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts. The model captures the emerging hourly pattern by considering the four 15 min intervals in each day-ahead price interval as a four-dimensional joint probability distribution. The resulting nontrivial, multivariate price difference distribution is learned using a normalizing flow, i.e., a deep generative model that combines conditional multivariate density estimation and probabilistic regression. Furthermore, this work discusses the influence of different external impact factors based on literature insights and impact analysis using explainable artificial intelligence (XAI). The normalizing flow is compared to an informed selection of historical data and probabilistic forecasts using a Gaussian copula and a Gaussian regression model. Among the different models, the normalizing flow identifies the trends with the highest accuracy and has the narrowest prediction intervals. Both the XAI analysis and the empirical experiments highlight that the immediate history of the price difference realization and the increments of the day-ahead price have the most substantial impact on the price difference.
翻译:由于可再生能源的渗透率较高,短期内部交易变得日益重要。在德国,日内电价通常以不同的小时模式围绕欧洲电力交易所(EPEX)点市场日价波动。这项工作提出了一种概率模型方法,用以模拟日内价格差异和日内合同。模型通过将每日价格间隔四十五分钟作为四维联合概率分布来捕捉正在形成的每小时模式。由此产生的非三角、多变价差分配是利用正常流动来学习的,也就是说,一种将有条件的多变密度估计和概率回归相结合的深层次基因化模型。此外,这项工作还根据文献洞察和影响分析,用可解释的人工智能(XAI)来分析不同外部影响因素的影响。正常流动与知情地选择历史数据和预测比对四维联合概率分布。因此产生的非三角、多变价差分布是利用正常的流流来学习的。在不同的模型中,有最精确的模型,即:将有条件的多变式密度估计和概率回归性回归性回归性回归性模型,以及最精确的当前价格趋势分析,以及最接近于最精确的预测。</s>