Neuronal dynamics is driven by externally imposed or internally generated random excitations/noise, and is often described by systems of random or stochastic ordinary differential equations. Such systems admit a distribution of solutions, which is (partially) characterized by the single-time joint probability density function (PDF) of system states. It can be used to calculate such information-theoretic quantities as the mutual information between the stochastic stimulus and various internal states of the neuron (e.g., membrane potential), as well as various spiking statistics. When random excitations are modeled as Gaussian white noise, the joint PDF of neuron states satisfies exactly a Fokker-Planck equation. However, most biologically plausible noise sources are correlated (colored). In this case, the resulting PDF equations require a closure approximation. We propose two methods for closing such equations: a modified nonlocal large-eddy-diffusivity closure and a data-driven closure relying on sparse regression to learn relevant features. The closures are tested for the stochastic non-spiking leaky integrate-and-fire and FitzHugh-Nagumo (FHN) neurons driven by sine-Wiener noise. Mutual information and total correlation between the random stimulus and the internal states of the neuron are calculated for the FHN neuron.


翻译:神经动态由外部强加的或内部产生的随机振动/噪声驱动,通常被随机或神经神经性普通差异方程式系统描述。这些系统接受解决方案的分布(部分),其特征是系统状态的单时联合概率密度函数(PDF)。它可以用来计算信息理论数量,如随机刺激与神经神经各内部状态(例如,膜膜潜力)之间的相互信息,以及各种脉冲统计数据。当随机引用以高萨白噪音为模型时,神经状态的联合PDF完全符合Fokker-普朗克方程式。然而,大多数生物上可信的噪音源是相互关联的(有色的)。在这种情况下,由此产生的PDFDF方方方程式需要关闭近距离。我们提出了关闭这些方程式的两种方法:修改非本地大错动关闭和数据驱动关闭,依靠稀释回归来学习相关特性。对关闭进行测试的测试,测试是由正态-硬硬硬硬硬硬度内流和正弦内导导导导的神经-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-硬质-导导导导导导导的内导的内导信息总的内导导导导导导信息总和导导导导导导导导导导导导导导导导导导导导导导导导导导导导的内导的内导的内置的内置数据。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
已删除
将门创投
7+阅读 · 2018年12月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
已删除
将门创投
7+阅读 · 2018年12月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员