Due to the linearity of quantum operations, it is not straightforward to implement nonlinear transformations on a quantum computer, making some practical tasks like a neural network hard to be achieved. In this work, we define a task called nonlinear transformation of complex amplitudes and provide an algorithm to achieve this task. Specifically, we construct a block-encoding of complex amplitudes from a state preparation oracle. This allows us to transform the complex amplitudes by using quantum singular value transformation. We evaluate the required overhead in terms of input dimension and precision, which reveals that the algorithm depends on the roughly square root of input dimension and achieves an exponential speedup on precision compared with previous work. We also discuss its possible applications to quantum machine learning, where complex amplitudes encoding classical or quantum data are processed by the proposed method. This paper provides a promising way to introduce highly complex nonlinearity of the quantum states, which is essentially missing in quantum mechanics.
翻译:由于量子操作的线性,在量子计算机上实施非线性变换并非直截了当,使神经网络等一些实际任务难以实现。 在这项工作中,我们定义了一个叫做复杂振幅的非线性变换的任务,并为完成这项任务提供了算法。 具体地说,我们从国家准备或奇数中构建了一个复杂振幅的区块编码。 这使我们能够通过使用量子单值变换来改变复杂的振幅。 我们从输入尺寸和精确度的角度来评估所需的间接费用, 这表明算法依赖于输入尺寸的大约平方根, 并比以往的工作更快地加速精确度。 我们还讨论了它对于量子机器学习的可能应用, 在那里, 复杂的振幅将古典或量数据编码成成正像或量数据被拟议的方法处理。 这份文件为引入量子状态的高度复杂的非线性提供了一个很好的方法, 量子力力学基本上缺失。