In this paper, we propose a refined scene text detector with a \textit{novel} Feature Enhancement Network (FEN) for Region Proposal and Text Detection Refinement. Retrospectively, both region proposal with \textit{only} $3\times 3$ sliding-window feature and text detection refinement with \textit{single scale} high level feature are insufficient, especially for smaller scene text. Therefore, we design a new FEN network with \textit{task-specific}, \textit{low} and \textit{high} level semantic features fusion to improve the performance of text detection. Besides, since \textit{unitary} position-sensitive RoI pooling in general object detection is unreasonable for variable text regions, an \textit{adaptively weighted} position-sensitive RoI pooling layer is devised for further enhancing the detecting accuracy. To tackle the \textit{sample-imbalance} problem during the refinement stage, we also propose an effective \textit{positives mining} strategy for efficiently training our network. Experiments on ICDAR 2011 and 2013 robust text detection benchmarks demonstrate that our method can achieve state-of-the-art results, outperforming all reported methods in terms of F-measure.
翻译:本文中, 我们提议为区域建议和文本检测精化配置一个精细的场景文本检测器, 包括 \ textit{ nnovel} 功能增强网络。 重新审视, 使用 3\ textit{ 仅3} 3\ time 3$ 滑动窗口特性的区域提案, 以及使用\ textit{ single size} 高水平的文本检测器, 特别是对于更小的场景文本来说, 不够充分。 因此, 我们设计一个新的场景检测器, 使用\ textit{ task- 特定} 、\ textit{ low} 和\ textitleit{ high} 语义整合网络, 以提高文本检测的性能。 此外, 由于\ textitleitle{ lish} 敏感位置RoI 共享普通对象检测器的组合体格不合理, 对于变异文本区域来说是不合理的, 设计一种\ textitalitalital