A collaborative filtering recommender system predicts user preferences by discovering common features among users and items. We implement such inference using a Bayesian double feature allocation model, that is, a model for random pairs of subsets. We use an Indian buffet process (IBP) to link users and items to features. Here a feature is a subset of users and a matching subset of items. By training feature-specific rating effects, we predict ratings. We use MovieLens Data to demonstrate posterior inference in the model and prediction of user preferences for unseen items compared to items they have previously rated. Part of the implementation is a novel semi-consensus Monte Carlo method to accomodate large numbers of users and items, as is typical for related applications. The proposed approach implements parallel posterior sampling in multiple shards of users while sharing item-related global parameters across shards.
翻译:合作过滤建议系统通过在用户和项目中发现共同特征来预测用户的偏好。 我们使用一种巴伊西亚双重特征分配模式,即随机子组配对模式来进行这种推论。 我们使用印度自助餐流程将用户和项目连接到特征上。 这里有一个功能是用户的子集和相匹配的项目子集。 通过培训特定特性的评级效应,我们预测评级。 我们使用电影用户数据来显示模型中的后推论,并预测用户对与先前评级项目相比的不可见项目的偏好。 部分实施是一种新颖的半协商一致蒙得卡洛方法,以吸收大量用户和项目,这是相关应用的典型做法。 提议的方法是在多个用户的体积中平行进行场外取样,同时将与项目有关的全球参数分享到不同的体积中。