The goal of learning from demonstrations is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations. Prior works on learning from demonstrations assume that the demonstrations are collected by a demonstrator that has the same dynamics as the imitator. However, in many real-world applications, this assumption is limiting -- to improve the problem of lack of data in robotics, we would like to be able to leverage demonstrations collected from agents with different dynamics. This can be challenging as the demonstrations might not even be feasible for the imitator. Our insight is that we can learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator. We develop a feasibility MDP (f-MDP) and derive the feasibility score by learning an optimal policy in the f-MDP. Our proposed feasibility measure encourages the imitator to learn from more informative demonstrations, and disregard the far from feasible demonstrations. Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works. We show the videos of the real robot arm experiments on our website (https://sites.google.com/view/learning-feasibility).


翻译:从示威中学习的目的是通过模仿示威中的行为来学习一个代理人(模拟者)的政策。从示威中学习先前的工作假设示威是由与模仿者具有相同动态的示威者收集的。然而,在许多现实应用中,这一假设是限制性的 -- -- 以改善机器人缺乏数据的问题,我们希望能够利用从具有不同动态的代理人那里收集的演示。这可能具有挑战性,因为演示对模仿者来说可能甚至不可行。我们的洞察力是,我们可以学习一种可行性指标,以捕捉模拟者进行演示的可行性可能性。我们开发了一个可行性的MDP(f-MDP),并通过学习F-MDP的最佳政策来取得可行性分数。我们提议的可行性研究措施鼓励模拟者从更多的信息演示中学习,而远远忽视可行的演示。我们在四个模拟环境中的实验和在真实的机器人上显示,我们所学的政策比以前的工作得到更高的回报。我们在网站(https://sitesites.goglegle.com/view)上展示了真正的机器人手臂实验的视频。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员