Fingerprints feature a ridge pattern with moderately varying ridge frequency (RF), following an orientation field (OF), which usually features some singularities. Additionally at some points, called minutiae, ridge lines end or fork and this point pattern is usually used for fingerprint identification and authentication. Whenever the OF features divergent ridge lines (e.g. near singularities), a nearly constant RF necessitates the generation of more ridge lines, originating at minutiae. We call these the necessary minutiae. It turns out that fingerprints feature additional minutiae which occur at rather arbitrary locations. We call these the random minutiae or, since they may convey fingerprint individuality beyond the OF, the characteristic minutiae. In consequence, the minutiae point pattern is assumed to be a realization of the superposition of two stochastic point processes: a Strauss point process (whose activity function is given by the divergence field) with an additional hard core, and a homogeneous Poisson point process, modelling the necessary and the characteristic minutiae, respectively. We perform Bayesian inference using an MCMC-based minutiae separating algorithm (MiSeal). In simulations, it provides good mixing and good estimation of underlying parameters. In application to fingerprints, we can separate the two minutiae patterns and verify by example of two different prints with similar OF that characteristic minutiae convey fingerprint individuality.


翻译:指针的特征通常用于指纹识别和认证。每当具有不同脊柱的特征(例如接近奇点)时,近乎常态的RF会要求生成更多脊脊线,起源于细点,我们称之为必要的细点点。我们发现指纹具有更多的细点,发生在相当任意的地点。我们称之为随机细点,或者,因为它们可能传递指纹的特性,因此,这种特征通常用于指纹识别和认证。因此,假定微点模式是两个斜点进程的超定位:一个Straus点进程(其活动功能由差异字段提供),一个额外的硬点,一个同质的Poisson点进程,为必要和特性建模。我们分别进行Bayesia 隐性,或者因为它们可能将指纹的特性传送到其范围以外。因此,最小点模式被假定为实现两个点进程的超级定位:一个Straus点进程(其活动功能由差异字段提供),一个额外的硬点进程,一个同质的Poisson点,为必要和特征的模型。我们用不同的参数来进行Bayesa intrial eximal eximalimal imal imal(我们用两个模型来进行良好的模拟分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年11月20日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月23日
Arxiv
0+阅读 · 2021年7月22日
Inner spike and slab Bayesian nonparametric models
Arxiv
0+阅读 · 2021年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年11月20日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员