Fingerprints feature a ridge pattern with moderately varying ridge frequency (RF), following an orientation field (OF), which usually features some singularities. Additionally at some points, called minutiae, ridge lines end or fork and this point pattern is usually used for fingerprint identification and authentication. Whenever the OF features divergent ridge lines (e.g. near singularities), a nearly constant RF necessitates the generation of more ridge lines, originating at minutiae. We call these the necessary minutiae. It turns out that fingerprints feature additional minutiae which occur at rather arbitrary locations. We call these the random minutiae or, since they may convey fingerprint individuality beyond the OF, the characteristic minutiae. In consequence, the minutiae point pattern is assumed to be a realization of the superposition of two stochastic point processes: a Strauss point process (whose activity function is given by the divergence field) with an additional hard core, and a homogeneous Poisson point process, modelling the necessary and the characteristic minutiae, respectively. We perform Bayesian inference using an MCMC-based minutiae separating algorithm (MiSeal). In simulations, it provides good mixing and good estimation of underlying parameters. In application to fingerprints, we can separate the two minutiae patterns and verify by example of two different prints with similar OF that characteristic minutiae convey fingerprint individuality.
翻译:指针的特征通常用于指纹识别和认证。每当具有不同脊柱的特征(例如接近奇点)时,近乎常态的RF会要求生成更多脊脊线,起源于细点,我们称之为必要的细点点。我们发现指纹具有更多的细点,发生在相当任意的地点。我们称之为随机细点,或者,因为它们可能传递指纹的特性,因此,这种特征通常用于指纹识别和认证。因此,假定微点模式是两个斜点进程的超定位:一个Straus点进程(其活动功能由差异字段提供),一个额外的硬点,一个同质的Poisson点进程,为必要和特性建模。我们分别进行Bayesia 隐性,或者因为它们可能将指纹的特性传送到其范围以外。因此,最小点模式被假定为实现两个点进程的超级定位:一个Straus点进程(其活动功能由差异字段提供),一个额外的硬点进程,一个同质的Poisson点,为必要和特征的模型。我们用不同的参数来进行Bayesa intrial eximal eximalimal imal imal(我们用两个模型来进行良好的模拟分析。