We study the numerical approximation of singularly perturbed convection-diffusion problems on one-dimensional pipe networks. In the vanishing diffusion limit, the number and type of boundary conditions and coupling conditions at network junctions changes, which gives rise to singular layers at the outflow boundaries of the pipes. A hybrid discontinuous Galerkin method is proposed, which provides a natural upwind mechanism for the convection-dominated case. Moreover, the method automatically handles the variable coupling and boundary conditions in the vanishing diffusion limit, leading to an asymptotic-preserving scheme. A detailed analysis of the singularities of the solution and the discretization error is presented, and an adaptive strategy is proposed, leading to order optimal error estimates that hold uniformly in the singular perturbation limit. The theoretical results are confirmed by numerical tests.
翻译:我们研究了单维管道网络上单维扰动对流扩散问题的数字近似值。在消失的扩散限制中,提出了网络交叉点变化的边界条件和混合条件的数量和类型,从而在管道的流出边界上产生单层。提出了混合不连续的加列金方法,为对流占主导的案件提供了一个自然的上风机制。此外,该方法自动处理消散扩散限制中的可变组合和边界条件,导致一个无药保护计划。对解决方案的特性和离散错误进行了详细分析,并提出了一项适应性战略,从而得出了一致维持在单一扰动限制中的最佳误差估计。理论结果得到了数字测试的证实。