We propose a new class of models specifically tailored for spatio-temporal data analysis. To this end, we generalize the spatial autoregressive model with autoregressive and heteroskedastic disturbances, i.e. SARAR(1,1), by exploiting the recent advancements in Score Driven (SD) models typically used in time series econometrics. In particular, we allow for time-varying spatial autoregressive coefficients as well as time-varying regressor coefficients and cross-sectional standard deviations. We report an extensive Monte Carlo simulation study in order to investigate the finite sample properties of the Maximum Likelihood estimator for the new class of models as well as its flexibility in explaining several dynamic spatial dependence processes. The new proposed class of models are found to be economically preferred by rational investors through an application in portfolio optimization.
翻译:我们建议了专门为时空数据分析而设计的新型模型。为此,我们利用时间序列计量中通常使用的计分驱动器(SD)模型的最新进展,将空间自动递减模型(SARAR(1,1),即SARAR(1),与自动递减模型(SD)的自动递减模型(SD)的自动递减模型,即自动递减模型(SD)模型(SD)相形见绌的模型。我们特别允许空间自动递减系数以及时间递减递减系数和跨部门标准偏离。我们报告了一项内容广泛的蒙特卡洛模拟研究,以调查新模型类别最大亲近估计器的有限样本特性及其解释若干动态空间依赖过程的灵活性。我们发现,理性投资者通过组合优化应用,在经济上偏好新提出的模型类别。