Expressive reading, considered the defining attribute of oral reading fluency, comprises the prosodic realization of phrasing and prominence. In the context of evaluating oral reading, it helps to establish the speaker's comprehension of the text. We consider a labeled dataset of children's reading recordings for the speaker-independent detection of prominent words using acoustic-prosodic and lexico-syntactic features. A previous well-tuned random forest ensemble predictor is replaced by an RNN sequence classifier to exploit potential context dependency across the longer utterance. Further, deep learning is applied to obtain word-level features from low-level acoustic contours of fundamental frequency, intensity and spectral shape in an end-to-end fashion. Performance comparisons are presented across the different feature types and across different feature learning architectures for prominent word prediction to draw insights wherever possible.


翻译:口头阅读被认为是口头阅读流畅的决定性属性,表达式读物被认为是口头阅读流利的决定性属性,它包括预想实现语法和突出度。在评价口头阅读时,它有助于确定发言者对文字的理解。我们考虑一个儿童阅读录音的标签数据集,用于使用声学-分解和词汇-合成特征独立语音检测突出的词句。以前一个对调良好的随机森林混合预测器被一个RNN序列分类器所取代,以利用长期表达的潜在环境依赖性。此外,还运用深层学习来从基本频率、强度和光谱形状的低层次声波层获得字级特征,以端对端的方式进行字级比对不同特征类型和不同特征学习结构进行业绩比较,以便尽可能地进行突出的字性预测。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
14+阅读 · 2020年10月26日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员