We say that a tree $T$ is an $S$-Steiner tree if $S \subseteq V(T)$ and a hypergraph is an $S$-Steiner hypertree if it can be trimmed to an $S$-Steiner tree. We prove that it is NP-complete to decide, given a hypergraph $\mathcal{H}$ and some $S \subseteq V(\mathcal{H})$, whether there is a subhypergraph of $\mathcal{H}$ which is an $S$-Steiner hypertree. As corollaries, we give two negative results for two Steiner orientation problems in hypergraphs. Firstly, we show that it is NP-complete to decide, given a hypergraph $\mathcal{H}$, some $r \in V(\mathcal{H})$ and some $S \subseteq V(\mathcal{H})$, whether this hypergraph has an orientation in which every vertex of $S$ is reachable from $r$. Secondly, we show that it is NP-complete to decide, given a hypergraph $\mathcal{H}$ and some $S \subseteq V(\mathcal{H})$, whether this hypergraph has an orientation in which any two vertices in $S$ are mutually reachable from each other. This answers a longstanding open question of the Egerv\'ary Research group. We further show that it is NP-complete to decide if a given hypergraph has a well-balanced orientation. On the positive side, we show that the problem of finding a Steiner hypertree and the first orientation problem can be solved in polynomial time if the number of terminals $|S|$ is fixed.
翻译:如果$S \subseteq V(T)$,则称树$T$是$S$-Steiner树,如果可以将超图修剪为$S$-Steiner树,则称超图是$S$-Steiner超树。我们证明,给定超图$\mathcal{H}$和一些$S \subseteq V(\mathcal{H})$,决定是否存在$\mathcal{H}$的子超图是$S$-Steiner超树是NP 完全的。作为推论,我们为超图中的两个Steiner方向问题给出了两个负面结果。首先,我们证明,在给定超图$\mathcal{H}$,一些$r \in V(\mathcal{H})$和一些$S \subseteq V(\mathcal{H})$的情况下,决定该超图是否有一个方向,其中从每个$S$中的顶点都可以到达$r$ 是NP完全的。其次,我们证明,在给定超图$\mathcal{H}$和一些$S \subseteq V(\mathcal{H})$的情况下,决定该超图是否有一个方向,其中$S$中的任意两个顶点互相可达 是NP完全的。这回答了Egerv\'ary研究组的一个悬而未决的问题。我们进一步证明,决定给定超图是否具有平衡的方向是NP完全的。在积极方面,我们证明,如果终端节点的数量$|S|$是固定的,则找到Steiner超树和第一个方向问题可以在多项式时间内解决。