We propose a novel deep learning framework for animation video resequencing. Our system produces new video sequences by minimizing a perceptual distance of images from an existing animation video clip. To measure perceptual distance, we utilize the activations of convolutional neural networks and learn a perceptual distance by training these features on a small network with data comprised of human perceptual judgments. We show that with this perceptual metric and graph-based manifold learning techniques, our framework can produce new smooth and visually appealing animation video results for a variety of animation video styles. In contrast to previous work on animation video resequencing, the proposed framework applies to wide range of image styles and does not require hand-crafted feature extraction, background subtraction, or feature correspondence. In addition, we also show that our framework has applications to appealing arrange unordered collections of images.
翻译:我们为动画视频重现顺序提出了一个新的深层次学习框架。 我们的系统通过将现有动画视频剪辑的图像的感知距离最小化来生成新的视频序列。 为了测量感知距离, 我们利用进化神经网络的激活, 并通过在小型网络上培训这些特征来学习感知距离, 其数据由人类感知判断构成。 我们显示, 通过这种感知度度和图解的多重学习技术, 我们的框架可以产生新的光滑和视觉吸引动动画视频结果, 用于各种动画视频样式。 与以往关于动画视频重现的作品相比, 拟议的框架适用于广泛的图像样式, 不需要手工艺的特征提取、 背景减法或特征通信。 此外, 我们还显示我们的框架可以应用来吸引未经排序的图像收藏。