Recent breakthroughs in natural language processing (NLP) have permitted the synthesis and comprehension of coherent text in an open-ended way, therefore translating the theoretical algorithms into practical applications. The large language-model (LLM) has significantly impacted businesses such as report summarization softwares and copywriters. Observations indicate, however, that LLMs may exhibit social prejudice and toxicity, posing ethical and societal dangers of consequences resulting from irresponsibility. Large-scale benchmarks for accountable LLMs should consequently be developed. Although several empirical investigations reveal the existence of a few ethical difficulties in advanced LLMs, there is no systematic examination and user study of the ethics of current LLMs use. To further educate future efforts on constructing ethical LLMs responsibly, we perform a qualitative research method on OpenAI's ChatGPT to better understand the practical features of ethical dangers in recent LLMs. We analyze ChatGPT comprehensively from four perspectives: 1) \textit{Bias} 2) \textit{Reliability} 3) \textit{Robustness} 4) \textit{Toxicity}. In accordance with our stated viewpoints, we empirically benchmark ChatGPT on multiple sample datasets. We find that a significant number of ethical risks cannot be addressed by existing benchmarks, and hence illustrate them via additional case studies. In addition, we examine the implications of our findings on the AI ethics of ChatGPT, as well as future problems and practical design considerations for LLMs. We believe that our findings may give light on future efforts to determine and mitigate the ethical hazards posed by machines in LLM applications.
翻译:最近自然语言处理(NLP)方面的突破使得能够以开放的方式综合和理解连贯的文本,从而将理论算法转化为实际应用。大型语言模型(LLM)对企业产生了重大影响,如报告总结软件和制版机。然而,观察显示,LLMS可能表现出社会偏见和毒性,对不负责任的后果构成道德和社会危险。因此,应当制定负责任的LMS的大规模基准。虽然一些实证调查显示,在高级LMS中存在一些道德方面的困难,但是目前使用LLMS的道德标准并没有进行系统的检查和用户研究。为了进一步教育今后努力负责任地建立LMS的道德标准,我们对OpenAI的CAPGPT进行了定性研究,以更好地了解最近LMS的道德危险的实际特征。我们从四个角度全面分析CatGPT(1) text{Bas}(2) textitleitit{Refilty}(3)\ textitutititititit{Robustn}(4)\ text{Text{Text{Text}}}{Textnationality}}}} {Tocitititality}}}。根据我们关于目前使用LMMs的道德标准中存在的道德问题的一些实际的伦理考虑,我们发现,我们现有的伦理标准,我们发现,我们通过一系列的道德标准研究无法通过对未来的道德标准进行进一步的道德研究来分析。