We propose a framework to model an operational conversational negation by applying worldly context (prior knowledge) to logical negation in compositional distributional semantics. Given a word, our framework can create its negation that is similar to how humans perceive negation. The framework corrects logical negation to weight meanings closer in the entailment hierarchy more than meanings further apart. The proposed framework is flexible to accommodate different choices of logical negations, compositions, and worldly context generation. In particular, we propose and motivate a new logical negation using matrix inverse. We validate the sensibility of our conversational negation framework by performing experiments, leveraging density matrices to encode graded entailment information. We conclude that the combination of subtraction negation and phaser in the basis of the negated word yields the highest Pearson correlation of 0.635 with human ratings.
翻译:我们提议了一个框架,通过将世界背景(原始知识)应用到对组成分布语义逻辑否定的逻辑否定中来模拟操作性对话否定的模型。 在一个单词中,我们的框架可以产生与人类对否定感的否定感相似的否定性。 这个框架纠正了逻辑上否定权重的含义,而更接近于造成分级的层次。 提议的框架灵活,可以适应对逻辑否定、构成和世界背景生成的不同选择。 特别是,我们提议并激励一种新的逻辑否定,使用矩阵反转。 我们通过进行实验,利用密度矩阵来编码分级要求信息,来验证我们对对话否定性框架的敏感性。 我们的结论是,在否定的词的基础上,减值否定和分级的组合产生了0.635和人类评级之间的最高皮尔逊相关性。